

Evaluación sistémica de la dimensión ambiental en la región de La Mojana (Colombia)

Autor: Leonel Vega Mora

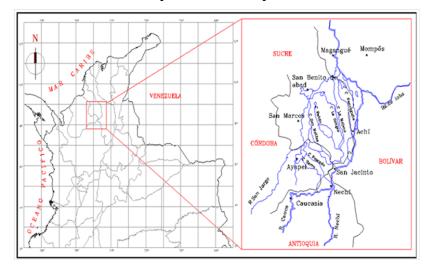
Institución: Universidad Nacional de Colombia

Resumen

La región de la Mojana se encuentra localizada en el norte de la República de Colombia. Esta region forma parte de la 'Depresión Momposina', una gran cubeta o zona baja inundable creada por el plegamiento de rocas sedimentarias, levantado hacia finales del Terciario hace unos 20 a 30 millones de años por la subducción lenta de la placa tectónica del Caribe bajo la placa de Sudamérica. Desde su formación, la Mojana ha sido irrigada por los desbordes naturales del río Cauca en su margen izquierda, conformando todo un sistema hídrico de drenaje que involucra múltiples caños y ciénagas, que posibilitan la distribución de agua y sedimentos, función básica que garantiza el aporte continuo de nutrientes y la riqueza ecosistémica de la región. Actualmente, la Mojana presenta múltiples problemáticas de carácter social, económico, institucional y ambiental, generadas como consecuencia de una serie de actuaciones antrópicas inadecuadas, dos de las cuales son quizás las más determinantes: La construcción de la carretera San Marcos - Majagual - Achí, que obstruyó el libre flujo de las aguas de desborde del río Cauca, originando impactos ambientales importantes relacionados con el régimen hídrico y con el aumento de las áreas de inundación y, la construcción del Dique Marginal del río Cauca entre Nechí - Achí, que constriñó la capacidad del río Cauca para conducir adecuadamente los caudales de avenida y los correspondientes desbordes controlados hacia los caños. Estas dos megaestructuras generaron cambios importantes en el régimen hídrosedimentológico del ecosistema y de la región, configurando igualmente un nuevo régimen hídrico así como un nuevo mapa de inundaciones. Este artículo, aplica como estudio de caso la metodología de Evaluación Sistémica del Impacto Ambiental – ESIA [Vega et al, 2013] para cuatro diferentes alternativas de manejo hidrosedimentológico en la región de La Mojana, lo que permite definir de manera cualitativa, el grado de deterioro y/o mejoramiento ambiental sobre cada factor ambiental considerado y el grado de agresividad y/o bondad de cada alternativa sobre el medio ambiente. Finalmente se plantean algunas conclusiones derivadas de este proceso, donde se resalta la alternativa 4 (condición ambientalmente sostenible), por ser la que más mejoramientos y bondades ambientales generaría.

<u>Palabras clave:</u> Evaluación sistémica del impacto ambiental, ecosistema estratégico, manejo hidrosedimentológico

Abstract


The Mojana region is located in the north of the Republic of Colombia. This region is part of the "Momposina Depression" a large bucket or low flood zone created by the folding of sedimentary rocks, up to late Tertiary makes about 20 to 30 million years by the slow subduction of the Caribbean tectonic plate under the South American plate. Since its formation, the Mojana has been irrigated by natural overflowing of the Cauca river on its left bank, forming around a water drainage system involving multiple streams and swamps, which allow the distribution of water and sediment, which guarantees basic function contribution continuous nutrient and ecosystem wealth of the region. Currently, Mojana presents multiple problems of social, economic, institutional and environmental, generated as a result of a number of anthropogenic activities inadequate, two of which are perhaps the most crucial: The construction of the San Marcos Road - Majagual - Achi, which obstructed the free flow of floodwater Cauca River, causing significant environmental impacts related to water regime and increased floodplain and dam construction Marginal del Cauca river between Nechí - Achi which compelled the ability to properly drive Cauca river flood discharges and associated controlled pipes to overflow. These two megastructures generated significant changes in the ecosystem and Hydrosedimentological regime in the region, also setting a new water system and a new flood map. This article, based on information generated under the Interadministrative Agreement - UN-DNP 336/2011 entered into between the National University of Colombia and the National Planning Department, in order to "join efforts to formulate short-term strategies that require Environmental Planning and Territorial Development Mojana region", applies as a case study the Systemic Assessment of Environmental Impact – SAEI methodology [Vega et al, 2013] for four different alternatives Hydrosedimentological management in the region of La Mojana, allowing qualitatively define the degree of deterioration and / or environmental improvement on each environmental factor considered and the degree of aggressiveness and / or goodness of each alternative on the environment. Finally some conclusionesderivadas of this process, where alternative 4 (environmentally sustainable condition) is highlighted, being the most improvement and environmental benefits arising generate.

Keywords: Systemic assessment of environmental impact, strategic ecosystem, hydrosedimentological management.

Introducción

La región de la Mojana se encuentra localizada en el norte de la República de Colombia, cerca del mar Caribe (ver Figura 1). Es la región comprendida entre la margen izquierda del río Cauca, desde Colorado (Antioquia) hasta su desembocadura en el Brazo de Loba (río Magdalena) y la margen derecha del río San Jorge, desde la ciénaga de Ayapel hasta su desembocadura en el Brazo de Loba [UN-PIGA, 2012].

Fuente: EL AUTOR

Figura 1. La región de la Mojana. Localización General e importancia

Esta región forma parte de la "Depresión Momposina", una gran cubeta o zona baja inundable creada por el plegamiento de rocas sedimentarias, levantado hacia finales del Terciario hace unos 20 a 30 millones de años por la subducción lenta de la placa tectónica del Caribe bajo la placa de Sudamérica. Desde su formación, la Mojanaha sido irrigada por los desbordes naturales del río Cauca en su margen izquierda, conformando todo un sistema hídrico de drenaje que involucra múltiples caños y ciénagas, que posibilitan la distribución de agua y sedimentos, función básica que garantiza el aporte continuo de nutrientes y la riqueza ecosistémica de la región [UN-PIGA, 2012].

La Mojana alberga una población de 400 mil habitantes distribuidos en once municipios y cuatro departamentos, como se muestra en el Cuadro 1. Según la permanencia de las inundaciones se pueden distinguir tres zonas: La zona más baja (al Norte), donde las inundaciones permanecen en promedio seis meses del año; la región intermedia donde las inundaciones duran entre cuatro y tres meses y la zona más alta, al sur, donde el período de las inundaciones es inferior a tres meses.

Cuadro 1. Distribución población en 11 municipios de la Mojana (2010)

Departamento	Municipio	Total	Cabecera	Resto	Hectáreas
Antioquia	Nechí	24.085	12.624	11.461	92.500
	San Jacinto	21.456	20.278	1.178	42.800
	Magangué	123.124	84.060	39.064	110.200
Sur de Bolívar	Achí	21.563	3.774	17.789	102.500
Córdoba	Ayapel	47.408	24.070	23.338	192.900
	San Marcos	54.364	31.932	22.432	101.200
	San Benito	24.387	5.370	19.017	159.200
	Sucre	22.364	7.070	15.294	113.000
Sucre	Caimito	11.643	3.187	8.456	43.600
	Guaranda	16.587	6.209	10.378	35.400
	Majagual	32.561	10.253	22.308	95.900
Totales 4	11	399.542	208.827	190.715	1.089.200

Fuente: DANE, 2011

Actualmente, la Mojana presenta múltiples problemáticas de carácter social, económico, institucional y ambiental, generadas como consecuencia de una serie de actuaciones antrópicas inadecuadas, entre las cuales vale mencionar dos, quizás las más determinantes [UN-PIGA, 2012]:

• La construcción de la carretera San Marcos – Majagual – Achí, que se diseñó y construyó sin las adecuadas consideraciones ambientales que garantizaran el libre flujo de agua a través de los caños que recogen las aguas de desborde del río Cauca, originando impactos ambientales importantes relacionados con el régimen hídrico y con el aumento de las áreas de inundación (Foto 1).

Fuente: EL AUTOR

Foto 1. Carretera San Marcos - Majagual - Achí

• La construcción del Dique Marginal del río Cauca entre Nechí – Achí, el cual, a pesar de haberse diseñado adecuadamente en su momento por la Universidad Nacional para garantizar el desborde controlado de las aguas del río hacia los caños de la Mojana,fue construido sin tomar en cuenta muchas de las especificaciones técnicas del diseño, como el alineamiento que lo ubicaba a una distancia prudente del lecho mayor del río dada la insuficiente capacidad del río para conducir los caudales de avenida, como la construcción de Diques Vertederos (fusibles) que garantizaban desbordes controlados hacia los caños, y otras de carácter estructural y constructivo del Dique en sí mismo (Foto 2).

Fuente: EL AUTOR

Foto 2. Dique Marginal del río Cauca entre Nechí - Achí

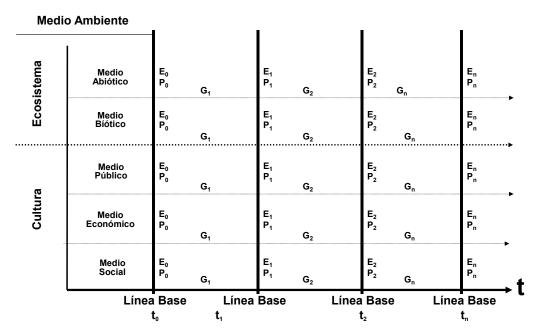
Es evidente que la construcción inadecuada de estas dos megaestructuras generaron cambios importantes en el régimen hidrosedimentológico del ecosistema y de la región, configurando igualmente un nuevo régimen hídrico así como un nuevo mapa de inundaciones en la Mojana, donde según su permanencia, actualmente se pueden distinguir tres zonas bien determinadas: La zona más baja(al Norte), donde las inundaciones permanecen en promedio seis meses del año; la región intermedia donde las inundaciones duran entre cuatro y tres meses y la zona más alta (al Sur), donde el período de las inundaciones es inferior a tres meses.

La aplicación de la metodología de Evaluación Sistémica del Impacto Ambiental – ESIA para cuatro diferentes alternativas de manejo hidrosedimentológico en la región de La Mojana, permite definir a nivel de prefactibilidad, el grado de deterioro y/o mejoramiento ambiental sobre cada factor ambiental considerado, así como el grado de agresividad y/o bondad de cada alternativa sobre el medio ambiente, orientando de paso la toma de decisiones hacia la mejor alternativa de manejo hidrosedimentológico para la región.

El enfoque conceptual y metodológico ESIA

La metodología ESIA [Vega et al, 2013] constituye un proceso de "evaluación ambiental estratégica" a políticas, planes, programas y proyectos, con el cual, luego de integrar y parametrizar sistémicamente los aspectos ecosistémicos, institucionales, económicos y sociales de una región determinada (o área de influencia de un proyecto determinado), evalúa para dife-

rentes escenarios de manejo antrópico, los impactos ambientales más relevantes generados, permitiendo definir las medidas para su prevención, mitigación y/o eliminación, orientando de paso la toma de decisiones para el desarrollo territorial del área objeto de estudio. El enfoque conceptual y metodológico ESIA se desarrolla a partir de la metodología genérica utilizada a nivel mundial para el proceso de Evaluación de Impacto Ambiental de Proyectos y sigue básicamente cada una de las fases típicas en el ciclo normal de un proyecto de ingeniería. No obstante lo anterior, la metodología ESIA tiene una connotación diferente respecto a los procesos típicos de evaluación de impacto ambiental.


Aunque en principio se basa en una adaptación y evolución de las metodologías iniciales de identificación y valoración de impactos ambientales de Leopold [1971], Battelle - Columbus [1972], Gómez Orea [1994] y Conesa [2003], su desarrollo se enmarca en los avances y resultados del proyecto de investigación "Hacia la Parametrización Sistémica de la Dimensión Ambiental" [Vega, 2011], que define métodos y herramientas sistémicas para disponer de información ambiental en cantidad y calidad, debidamente recolectada y organizada bajo el marco ordenador de Estado-Presión-Gestión (EPG), sistematizada y almacenada con la ayuda del Mapa Matriz de EPG (Ver Cuadro 2) y agregada a través de Líneas Base de Información Ambiental (LBIA) (Ver Figura 2).

Cuadro 2. Mapa Matriz EPG de integración ambiental

			DIMENSIÓN AMBIENTA	L									
	edio Ambiente	Componentes	Sub Componentes	Estado Ambiental (E)			Presión Antrópica (P)		ópica	Gestión Ambiental (GA)			
	rdio Ambiente	Componentes	Sub Componentes		q	у	d	g	1	GAP	GAE	GAC	
			Geología regional y local		1E					1GAP	1GAE	1GAC	
		Geología	Geomorfología		2E			2g		2GAP	2GAE	2GAC	
		Geologia	Geotécnia	3E			3g		3GAP	3GAE	3GAC		
			Suelos	4k	4q	4y	4d	4g	4i	4GAP	4GAE	4GAC	
	MEDIO	Recursos Naturales No Renovables	Petróleo, Carbón, Gas Natural, Minerales Metálicos, Minerales No Metálicos	5k	5q	5y			5i	5GAP	5GAE	5GAC	
4	ABIÓTICO	Hidrología	Aguas superficiales	6k	6q	6y	6d	6g	6i	6GAP	6GAE	6GAC	
Σ		Hidrologia	Aguas subterráneas	7k	7q	7y	7d	7g	7i	7GAP	7GAE	7GAC	
H			Clima		8E			8g	8i	8GAP	8GAE	8GAC	
ECOSISTEMA		Atmósfera	Aire	9E			9g	9i	9GAP	9GAE	9GAC		
S			Ruido		10E			10g	10i	10GAP	10GAE	10GAC	
8		Ecosistemas terrestres	Flora	11k	11q	11y	11d		11i	11GAP	11GAE	11GAC	
ш			Fauna	12k	12q	12y	12d		12i	12GAP	12GAE	12GAC	
	MEDIO	Ecosistemas acuáticos	Hidrobiota	13k	13q	13y	13d		13i	13GAP	13GAE	13GAC	
	BIÓTICO	Ecosistemas estratégicos	Por su importancia, sensibilidad o por ser áreas protegidas	14k	14q	14y			14i 14GAP		14GAE	14GAC	
		Servicios ecosistémicos	Regulación (ciclos naturales)	15E 16E			15d		15i	15GAP	15GAE	15GAC	
			Soporte (biodiversidad, aprovisionamiento)				16d		16i	16GAP	16GAE	16GAC	
			Control (resiliencia)	17E		17d		17i	17GAP	17GAE	17GAC		
		Componente político - institucional	Aspectos políticos	18E				18i					
			Presencia institucional pública	19E				19i					
			Ejercicio de la autoridad ambiental	20E					20i	E = Estado del medio ambiente (k, q, y)			
	MEDIO	Componente espacial	Espacio público en asentamientos urbanos y rurales	21E 21i k = cantidad de bienes y servicios ec				enes y servicios ecosis	témicos y antrópicos				
	PÚBLICO		Infraestructura de vías y transporte		22E				22i	q = calidad de bienes y servicios ecosistémicos y a		émicos y antrópicos	
			Servicios públicos	23E				23i	y = disponibilidad = f(OAT)				
			Servicios sociales	24E				24i	,,				
⋖			Polos y tendencias de desarrollo	2		25E				25i	P = Presión antrópica sobre el medio ambiente (d. c		biente (d, g, i)
R		Estructura de la propiedad	Formas de tenencia, titularidad, conflictos	26E					26i	d = demanda de bienes y servicios ecosistémicos		stémicos	
ı	MEDIO	Estructura productiva	Procesos productivos y tecnológicos		27E				27i	g= generación de	residuos sólidos, líquio	los y gaseosos	
\exists	ECONÓMICO	Estructura comercial	Identificación y caracterización de la actividad comercial	28E					28i	i = impacto sobre el medio ambiente			
CULTURA		Mercado laboral	Oferta, demanda y tipo de mano de obra		29E				29i				
_			Caracterización demográfica grupos poblacionales	30					30i	GA = Gestión Ambiental			
		Componente demográfico	Dinámica de poblamiento y tendencias demográficas	31E				31i	GAP = Gestión Ar	nbiental Pública			
			Necesidades básicas insatisfechas	32E					32i	GAE = Gestión Ambiental Empresarial			
	MEDIO	Componente político v de	Aspectos políticos, organización comunitaria y mecanismos de participación	33E					33i		nbiental Ciudadana		
	SOCIAL	participación	Socialización y retroalimentación del proyecto		34E				34i				
		Componente antropológico	Mundo Simbólico o Imaginario Social		35E				35i				
		Componente arqueológico	Patrimonio arqueológico		36E				36i				

Fuente: Vega et al, 2013

Fuente: Vega et al, 2013

Figura 2. Líneas Base de Información Ambiental

Este esquema de parametrización facilita enormemente el proceso de identificación, valoración y análisis de impactos ambientales, los cuales serán entendidos como "alteraciones o variaciones significativas de las condiciones de Estado de un medio ambiente determinado, generados la mayoría de veces como consecuencia de una acción o Presión antrópica sobre el medio ambiente".

La metodología ESIA aplica el Análisis Multicriterio (AMC) en el cual cada Acción (Aj) significativa de la alternativa o escenario de manejo antrópico (k) se interrelaciona de manera causal (cualitativa, cuantitativa, estocástica o difusamente) con cada uno de los elementos del medio ambiente o Factores Ambientales (Fi) susceptibles de ser impactados, de modo que permite la valoración, evaluación y análisis de los Impactos ambientales generados en dicha interrelación, cuyo marco lógico se resume en la Cuadro 3.

Cuadro 3. Marco lógico de valoración, evaluación y análisis de impactos ambientales

Factores		Р	ACCIONES DEL PROYECTO (ALTERNATIVA k)			Valoración Cualitativa DETERIORO Y/O	Funciones de Transformación	Valoración Cuantitativa
Ambientales	Msp	[0-1000]	A ₁	A _j	A _m	MEJORAMIENTO AMBIENTAL	EA = f(M)	VALOR IMPACTO TOTAL SOBRE CADA FACTOR
			I ₁₁	I_{1j}	I_{1m}	$I_1 = \frac{P_1}{1000} \cdot \sum_{j=1}^{j=m} I_1$		
F,	Msp ₁	P ₁	Mcp_{11}	Mcp_{1j}	Мср1111	$Mcp_1 = \sum_{j=1}^{j=m} Mcp_{1_j}$	$EAN_1 = f(Mcp_1 - Msp_1)$	$ V_1 = \left[\frac{ I_1 }{m \Delta x I_1 } \cdot (EAN_1)^2\right]^{2/3}$
			$ V_{11} = \left[\frac{ I_{11} }{m \triangle x I_{1j} } \cdot (EAN_{11})^2\right]^{2/3}$	$ V_{1j} = \left[\frac{ I_{1j} }{m \triangle x I_{1j} } \cdot (EAN_{1j})^2\right]^{2/3}$	$ V_{1m} = \left[\frac{ I_{1m} }{m\Delta x I_{1j} } \cdot (EAN_{1m})^2\right]^{2/3}$		Functiones de l'ansformacion valoracio y managent production de l'ansformacion y managent production de l'Alora (M) SOBRE C. $\frac{P_1}{I_{1000}} \cdot \sum_{j=1}^{J=m} I_1$ $= \sum_{j=1}^{J=m} Mcp_1, EAN_1 = f(Mcp_1 - Msp_1) V_1 = \frac{ I_1 }{ mix ^2}$ $= \sum_{j=1}^{J=m} Mcp_{ij} EAN_i = f(Mcp_i - Msp_i) V_i = \frac{ I_1 }{ mix ^2}$ $= \sum_{j=1}^{J=m} Mcp_{ij} EAN_n = f(Mcp_n - Msp_n) V_n = \frac{ I_2 }{ mix ^2}$	
			I_{t1}	I_{ij}	I _{im}	$I_i = \frac{P_i}{1000} \cdot \sum_{j=1}^{j=m} I_{ij}$		
F,	Msp	Pi	Mcp_{i1}	Мср _{іј}	Мср _{іт}	$Mcp_i = \sum_{j=1}^{j=m} Mcp_{ij}$	$EAN_i = f(Mcp_i - Msp_i)$	$ V_{\ell} = \left[\frac{ I_{\ell} }{m \Delta x I_{\ell} } \cdot (EAN_{\ell})^2\right]^{2/3}$
			$ V_{i1} = \left[\frac{ I_{i1} }{m \Delta x I_{ij} } \cdot (EAN_{i1})^2\right]^{2/3}$	$\left V_{ij}\right = \left[\frac{\left I_{ij}\right }{m \hat{\alpha} x \left I_{ij}\right } \cdot \left(EAN_{ij}\right)^{2}\right]^{2/3}$	$ V_{im} = \left[\frac{ I_{im} }{m \triangle x I_{ij} } \cdot (EAN_{im})^2\right]^{2/3}$			
			I_{n1}	I_{nj}	Inm	$I_n = \frac{P_n}{1000} \cdot \sum_{j=1}^{j=m} I_n$		
F _n	Msp _n	P _n	Mcp_{n1}	Mcp_{nj}	Mcp_{nm}	$Mcp_n = \sum_{j=1}^{j=m} Mcp_n$	$EAN_n = f(Mcp_n - Msp_n)$	$V_n = \left[\frac{ I_n }{m \Delta x I_\ell } \cdot (EAN_n)^2\right]^{2/3}$
			$ V_{n1} = \left[\frac{ I_{n1} }{m \Delta x I_{nj} } \cdot (EAN_{n1})^2\right]^{2/3}$	$\left V_{nj}\right = \left[\frac{ I_{nj} }{m \pm x I_{nj} } \cdot \left(EAN_{nj}\right)^2\right]^{2/3}$	$ V_{nm} = \left[\frac{ I_{nm} }{m \Delta x I_{nj} } \cdot (EAN_{nm})^2\right]^{2/3}$			
AGRESIVID.	ón Cualitat AD Y/0 BO DA ACCIÓ	NDAD	$I_{A1} = \sum_{i=1}^{i=n} P_i.I_{i1}$	$I_{Aj} = \sum_{i=1}^{i=n} P_i. I_{ij}$	$I_{Am} = \sum_{i=1}^{i=n} P_i \cdot I_{im}$			
	on Cuantita D AMBIENT ACCIÓN Y	AL	$IA_1 = \sum_{i=1}^{i=n} P_i \cdot V_{i1}$	$IA_i = \sum_{i=1}^{i=n} P_i.V_{ij}$	$IA_m = \sum_{i=1}^{i=n} P_i \cdot V_{im}$			$IAT_k = \sum_{i=1}^{i=n} P_i.V_i$

Fuente: Vega et al, 2013

El Impacto Ambiental Total (IAT) de un proyecto o alternativa (k) puede determinarse mediante la sumatoria ponderada del Valor del Impacto (Vi) recibido por cada Factor Ambiental (Fi). Se expresa mediante la ecuación 1, así [Conesa, 2003]:

$$IAT_k = \sum_{i=1}^{i=n} P_i . V_i \qquad (Eq. 1)$$

donde:

- = Importancia Ambiental Ponderada: Peso o importancia relativa de cada factor ambiental en el contexto del medio ambiente considerado. Varía entre [0–1000] y se asigna por consenso mediante Panel de Expertos.
- = Valor del Impacto Neto recibido por cada factor ambiental Involucra la importancia intrínseca total del impacto en cada factor ambiental y el estado ambiental neto (condición con proyecto menos condición sin proyecto). Varía entre [± 1], su signo es el de la importancia intrínseca total y se calcula mediante la ecuación 2, como sigue:

$$|V_i| = \left[\frac{|I_i|}{m\acute{a}x(|I_i|)} \cdot (EAN_i)^2\right]^{1/3}$$
 (Eq. 2)

donde:

= Importancia intrínseca total del impacto sobre cada factor ambiental . Se calcula mediante la ecuación 3 y dependiendo del signo negativo o positivo podrá ser asimilada cualitativamente a un grado relativo de Deterioro y/o Mejoramiento Ambiental ocurrido sobre el factor ambiental considerado, como sigue:

$$I_i = \frac{P_i}{1000} \cdot \sum_{j=1}^{j=m} I_{ij}$$
 (Eq. 3)

donde:

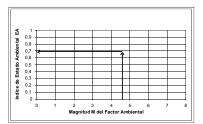
= Importancia intrínseca del impacto generado sobre el factor ambiental por la acción Se calcula mediante la ecuación 4 [Conesa, 2003] que relaciona las diferentes características intrínsecas de los impactos ambientales y cuya valoración se realiza mediante Panel de Expertos con ayuda de la Cuadro 4.

$$I_{ij} = NA_{ij} \cdot (3IN_{ij} + 2EX_{ij} + MO_{ij} + PE_{ij} + RV_{ij} + SI_{ij} + AC_{ij} + EF_{ij} + PR_{ij} + MC_{ij})$$

$$(Eq. 4)$$

Cuadro 4. Valoración cualitativa de características intrínsecas de impactos

CARACTERISTICA		DESCRIPCIÓN	VALORACIÓN CUALITATIVA		
			Irrelevante	0 - 25	
i	IMPORTANCIA	Medida cualitativa del impacto a partir del grado de incidencia de la	Moderado	25 - 50	
'	INTRÍNSECA	alteración producida y de sus efectos	Severo	50 - 75	
			Crítico	75 - 100	
NA	NATURALEZA	Carácter beneficioso o perjudicial del impacto	Beneficioso	1+	
IVA	NATORALEZA	Caracter beneficioso o perjudicial del impacto	Perjudicial	1-	
			Baja	1	
		Grado de incidencia de la acción sobre el factor (desde mínima a	Media	2	
IN	INTENSIDAD	destrucción total)	Alta	4	
		acondition (daily	Muy Alta	8	
			Total	12	
			Puntual	1	
		Area de influencia esperada en relación con el entorno del proyecto que	Parcial	2	
EX	EXTENSIÓN	puede ser representada en términos porcentuales.	Extenso	4	
		pacae ser representada en terminos porcentados.	Total	8	
			Crítico	4+	
		Tiempo que transcurre desde el inicio de la acción y el inicio del impacto	Largo Plazo	1	
MO	MOMENTO	que produce. Corto plazo (menos de un año), medio plazo (1 a 5 años),	Medio Plazo	2	
		largo plazo (más de 5 años)	Inmediato	4	
		,	Crítico	4+	
		Tiempo que se espera permanezca el impacto desde su aparición. Fugaz		1	
PE	PERSISTENCIA	(menos de 1 año), Temporal (1 a 10 años), Permanente (más de 10 años)	Temporal	2	
		(Permanente	4	
		Posibilidad de reconstruir el factor afectado por medios naturales. Corto	Corto Plazo	1	
RV	REVERSIBILIDAD	plazo (menos de un año), medio plazo (1 a 10 años), largo plazo (más de	Medio Plazo	2	
		10 años)	Irreversible	4	
		Dos impactos son sinérgicos si su manifestación conjunta es superior a la	Sin Sinergismo	1	
SI	SINERGIA	suma de las manifestaciones separadas. Si hay debilitamiento, la sinergia	Sinérgico	2	
		es negativa.	Muy Sinérgico Simple	4	
AC	ACUMULACIÓN	Un impacto es acumulativo si la presencia continuada de la acción hace		1	
		que el impacto crezca con el tiempo	Acumulativo	4	
EF	CAUSA/EFECTO	Directa si es la acción misma la que origina el impacto. Indirecta si es otro	Indirecto	1	
		impacto	Directo	4	
			Irregular	1	
PR	PERIODICIDAD	Regularidad de la manifestación del impacto.	Períodico	2	
			Continuo	4	
			Inmediata	1	
MC	MC: RECUPERABILIDAD	Posibilidad de recontruir el factor afectado mediante gestión ambiental	Medio Plazo	2	
			Mitigable	4	
			Irrecuperable	8	


Fuente: Conesa, 2003

= Índice de Estado Ambiental Neto del factor ambiental Varía entre [0-1] y se calcula mediante la ecuación 5:

donde:

- = Magnitud del factor ambiental CON proyecto
- = Magnitud del factor ambiental SIN proyecto (Línea Base)
- = Función de Transformación del factor ambiental : Convierte las magnitudes dimensionales del factor ambiental en términos de un Índice de Estado Ambiental adimensional, como se muestra a manera de ejemplo en la Figura 3.

Fuente: Vega et al, 2013

Figura 3. Ejemplo gráfico para las Funciones de Transformación

Finalmente, de acuerdo con el marco lógico de valoración, evaluación y análisis (Tabla 3), es posible determinar igualmente la importancia intrínseca total del impacto sobre el medio ambiente generado por cada Acción A_j. Se calcula mediante la ecuación 6 y dependiendo del signo negativo o positivo podrá ser asimilada cualitativamente a un grado relativo de Agresividad y/o Bondad Ambiental de cada Acción sobre el medio ambiente considerado, como sigue:

$$I_{Aj} = \sum_{i=1}^{i=n} P_i . I_{ij}$$
 (Ec. 6)

La aplicación de la metodología ESIA en la región de La Mojana

Dependiendo de las fases de desarrollo de un Plan y/o Programa considerado, la metodología ESIA involucra básicamente dos momentos de valoración, evaluación y análisis de los impactos ambientales: uno de carácter cualitativo para la fase de "prefactibilidad" y selección de alternativas, y otro de carácter cuantitativo para la fase de "factibilidad" de la alternativa seleccionada, tal como se muestra de manera resumida en la Cuadro 5.

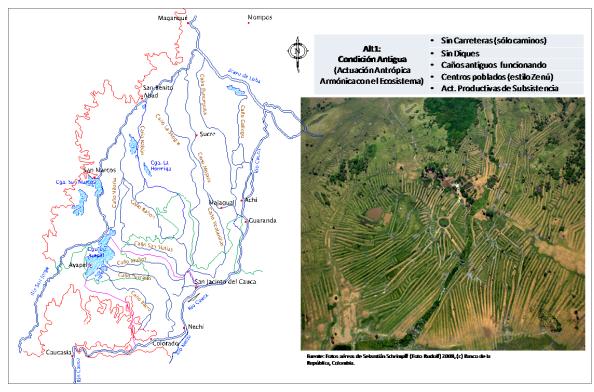
Cuadro 5. El proceso metodológico ESIA

FASES DEL PLAN Y/O PROGRAMA DE DESARROLLO	ETAPAS COMPONENTE AMBIENTAL	PROCESO EVALUACIÓN SISTÉMICA DE LA DIMENSIÓN AMBIENTAL - ESDA	ACCIONES			
IDEA DEL PLAN	VISIÓN AMBIENTAL DEL PLAN	INICIA PROCESO ESDA	Solicitud Licencia Ambiental Estudios de Impacto Ambiental Descripción y Análisis del Alternativas o Escenario Manejo Antrópico Marco Legal y Normativo Parametrización Sistémica de la Dimensión Ambientidentificación y Previsión de Impactos Importancia Intrinseca de Impactos Análisis Cualitativo Total Valoración Cuantitativa Dimensional Análisis Cuantitativa Adimensional Análisis Cuantitativo Total			
Y/O PROGRAMA	Y/O PROGRAMA	INICIA PROCESO ESDA	Estudios de Impacto Ambiental			
			Descripción y Análisis del Alternativas o Escenarios de Manejo Antrópico			
		DESCRIPCIÓN GENERAL DEL PLAN Y/O PROGRAMA Y DEL MEDIO AMBIENTE	Marco Legal y Normativo			
PREFACTIBILIDAD Evaluación de Alternativas y	EVALUACIÓN AMBIENTAL DE ALTERNATIVAS O ESCENARIOS		Parametrización Sistémica de la Dimensión Ambienta			
Selección de Escenario de Manejo Antrópico óptimo	DE MANEJO ANTRÓPICO		Identificación y Previsión de Impactos			
	VALORACIÓN Y ANÁLISIS CUALITATIVO DE IMPACTOS DE ALTERNATIVAS CONSIDERADAS	Importancia Intrinseca de Impactos				
			Análisis Cualitativo Total			
			Valoración Cuantitativa Dimensional			
FACTIBILIDAD Diseños Básicos de Ingeniería		VALORACIÓN Y ANÁLISIS CUANTITATIVO DE IMPACTOS DE ALTERNATIVA SELECCIONADA	Valoración Cuantitativa Adimensional			
	ESTUDIO DE IMPACTO		Análisis Cuantitativo Total			
	O ESCENARIO SELECCIONADO	DI ANI DE MANIE IO AMPIENTAL	Formulación Plan de Manejo Ambiental			
DISEÑO Diseños Detallados		PLAN DE MANEJO AMBIENTAL	Formulación Programa de Monitoreo y Seguimiento Ambiental			
		TERMINA PROCESO ESDA	Licenciamiento Ambiental			
CONSTRUCCIÓN Y OPERACIÓN	MONITOREO Y SEGUIMIENTO AMBIENTAL	MONITOREO Y SEGUIMIENTO AMBIENTAL	Monitoreo y Seguimiento Ambiental			

Fuente: Vega et al, 2013

El proceso de evaluación sistémica de la dimensión ambiental para el manejo hidrosedimentológico en la región de La Mojana es realizado sólo hasta la fase de Prefactibilidad (resaltado en gris en el Cuadro 5), lo que implica la identificación, valoración y análisis cualitativo de los impactos ambientales generados en cada alternativa o escenario de manejo considerado.

Se identificaron y seleccionaron cuatro alternativas de manejo hidrosedimentológico (Cuadro 6).



Cuadro 6. Alternativas de Manejo Hidrosedimentológico

ALTERNATIVAS	CONDICIÓN HIDROLÓGICA		ACCIONES ANTRÓPICAS RELEVANTES DE CADA ALTERNATIVA
ALT1. CONDICIÓN ANTIGUA (LÍNEA BASE)	Caudales	1.1	Sin Carreteras (sólo caminos)
(Antes de 1950): Poca o ninguna Infraestructura de	Altos,	1.2	Sin Diques Caños antiguos funcionando
Importancia	Medios, Bajos	1.4	Centros poblados (con gran influencia Zenú) Actividades Productivas de Subsistencia
	Caudales 2.1 Carreteras mal construidas y deterioradas		Carreteras mal construidas y deterioradas
ALT2. CONDICIÓN ACTUAL (1950 - 2011): Actividad Antrópica Sin Ningún	Altos, Medios,	2.3	Dique construido incompleto y deteriorado Caños sedimentados, contaminados y eutrificados
Ordenamiento Territorial	Bajos	2.4	Centros poblados inundados y población desplazada Actividades Productivas Afectadas y Disminuidas
ALT3. CONDICIÓN MEJORADA	Caudales Altos,	3.1	Carreteras construidas, reconstruidas, mantenidas y concesionadas Dique reconstruido y Diques Vertedero funcionando
(2011 - 2020): Actividad Antrópica Con Algún Ordenamiento Territorial	Medios, Bajos	3.4	Caños en proceso de adecuación, mantenimiento y descontaminación Centros Poblados en proceso de reconstrucción
ALT4. CONDICIÓN AMBIENTALMENTE SOSTENIBLE	Caudales	3.5 4.1	Actividades Productivas en Recuperación (pero no sostenibles) Nuevas carreteras con Puentes y Viaductos en zonas más bajas
(2020 hacia adelante): Actividad Antrópica con Ordenamiento Ambiental Territorial y Planificación	Altos, Medios,	4.2	Dique reconstruido y Diques Vertedero funcionando, ContraDique Caños adecuados, mantenidos, descontaminados y funcionando
hacia el Desarrollo Sostenible	Bajos	4.4 4.5	Centros Poblados Reconstruidos (viviendas palafíticas y/o flotantes) Actividades Productivas Ambientalmente Sostenibles

Fuente: UN-PIGA, 2012

La localización y caracterización de cada alternativa se muestra en las Figuras 4, 5, 6 y 7.

Fuente: El Autor

Figura 4. La Mojana. Condición Antigua

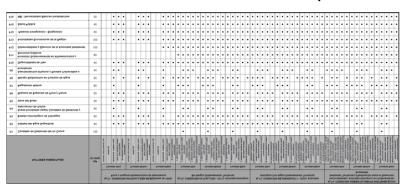
Figura 5. La Mojana. Condición Actual

Fuente: El Autor

Figura 6. La Mojana. Condición Actual Mejorada

Figura 7. La Mojana. Condición Ambientalmente Sostenible

Posteriormente, con la ayuda del Panel de Expertos¹, se identificaron y ponderaron los factores ambientales susceptibles de ser impactados en concordancia con los requerimientos de protección ambiental establecidos por la normatividad ambiental de Colombia (Cuadro 7), y se identificaron los impactos ambientales significativos en cada alternativa considerada (Cuadro 8).

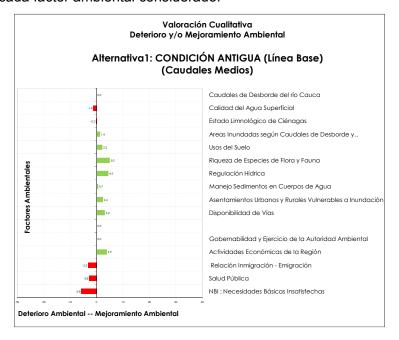

¹ Panel de Expertos conformado entre otros por: Luis Alejandro Camacho Botero MSc. PhD. Especialista en Modelación Matemática. Lilian Posada García. PhD. Especialista en Hidráulica Fluvial y Transporte de Sedimentos. Gabriel Pinilla Agudelo. MSc. PhD. Especialista Biología y Limnología. Jaime Iván Ordóñez Ordoñez. PhD. Especialista Hidráulica y Sedimentología. Kim Gregory Robertson. MSc. Especialista en Geomorfología. Verónica Botero F. MSc. Especialista en Geomática, Teledetección y Gestión de Riesgos. Leonel Vega Mora. MSc. PhD. Especialista en Evaluación de Impacto Ambiental.

Cuadro 7. Identificación y ponderación de Factores Ambientales

Sectores del Desarrollo	Recursos	Componentes Ambientales		Factores Ambientales	P [0-1000]
			F1	Caudales de Desborde del río Cauca	150
	Recursos Naturales Renovables	Agua	F2	Calidad del Agua Superficial	40
				Estado Limnológico de Ciénagas	50
Ecosistemas				Areas Inundadas según Caudales de Desborde y adecuación de Caños	40
		Suelo	F5	Usos del Suelo	50
		Flora y Fauna	F6	Riqueza de Especies de Flora y Fauna	50
	Servicios Ambientales	Regulación	F7	Regulación Hidrica	80
	DelVicios Ariolentales	Control	F8	Manejo Sedimentos en Cuerpos de Agua	50
		Asentamientos Urbanos y Rurales	F9	Asentamientos Urbanos y Rurales Vulnerables a Irundación	40
	Bienes y Servicios creados con fines de convivencia	Infraestructura Vias y Transporte	F10	Disponibilidad de Vias	40
Sector Público		Inversión Pública	F11	Inversión Gubernamental en Infraestructura y Servicios públicos	80
	Recursos institucionales para la gestión ambiental	Humanos, Legales y Normativos, Organizacionales y Administrativos, Científico-Tecnológicos, Instrumentos Económicos y Financieros, Políticas, Planes, Programas, Proyectos	F12	Gobernabilidad y Ejercicio de la Autoridad Ambiental	100
lector Económico	Bienes y Servicios creados con fines productivos	Infraestructura Productiva	F13	Actividades Económicas de la Región	100
		Demografia	F14	Relación Inmigración - Emigración	40
Sociedad Civil	Recursos Humanos, Políticos y Simbólicos de la Población	Salud Pública	F15	Salud Pública	40
		Vivienda, Servicios Sanitarios, Educación Básica e Ingreso Minimo	F16	NBI : Necesidades Básicas Insatisfechas	50

Cuadro 8. Matriz de Identificación de Impactos

Fuente: El Autor


Luego, en concordancia con la ecuación 4 y con la guía de valoración cualitativa de características intrínsecas de impactos (Cuadro 4), y haciendo uso de un aplicativo Excel diseñado específicamente para el procesamiento de información, a través del Panel de Expertos y en concordancia con los resultados de la modelación matemática [UN-PIGA, 2012] realizada, se caracterizó y determinó la importancia intrínseca de cada uno de los impactos identificados.

Finalmente, siguiendo el marco lógico de valoración, evaluación y análisis propuesto (Cuadro 3), se calculó para cada alternativa, la importancia intrínseca total del impacto sobre cada factor ambiental , y, la importancia intrínseca total del impacto sobre el medio ambiente generado por cada alternativa

Resultados y discussion

En las Figuras 8, 9, 10 y 11 se muestra gráficamente para cada una de las cuatro alternativas consideradas, los valores relativos de la importancia intrínseca total del impacto sobre cada factor ambiental , que como se ha planteado, a efectos de la presente metodología será asimilada cualitativamente a un grado relativo de Deterioro y/o Mejoramiento Ambiental ocurrido sobre cada factor ambiental considerado.

Fuente: El Autor

Figura 8. Deterioro y/o Mejoramiento Ambiental Alt. 1: Condición Antigua

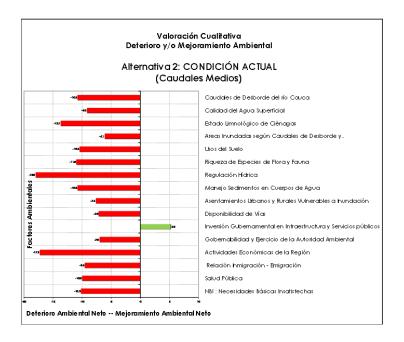
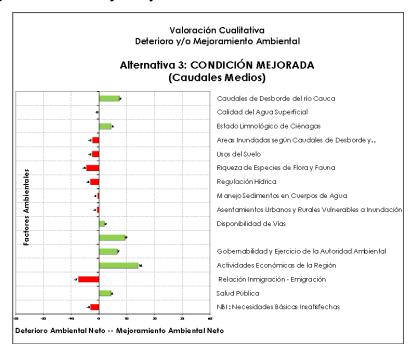



Figura 9. Deterioro y/o Mejoramiento Ambiental Alt. 2: Condición Actual

Fuente: El Autor

Figura 10. Deterioro y/o Mejoramiento Ambiental Alt. 3: Condición Mejorada

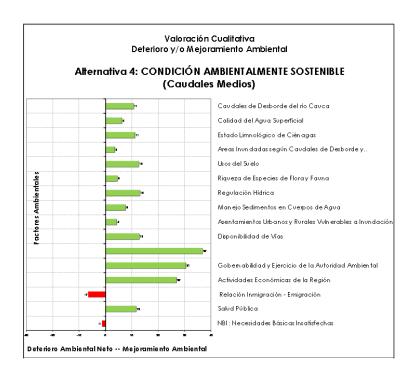


Figura 11. Deterioro y/o Mejoramiento Ambiental Alt. 4: Condición Ambientalmente Sostenible

Finalmente, en la Figura 12 se muestran gráficamente los valores relativos de la importancia intrínseca total del impacto sobre el medio ambiente generado por cada una de las alternativas consideradas, que como se ha planteado, a efectos de la presente metodología será asimilada cualitativamente a un grado relativo de Agresividad y/o Bondad Ambiental de cada alternativa sobre el medio ambiente.

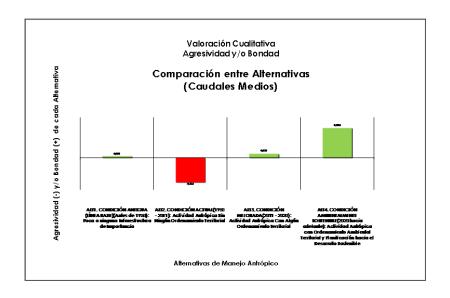


Figura 12. Agresividad y/o Bondad entre Alternativas

A la luz de los resultados de la modelación hidrológica, matemática y física, así como de la evaluación ambiental de alternativas realizada, se evidencia que además de la falta de presencia gubernamental en la ecorregión, las condiciones de manejo actual de la región de La Mojana son nocivas para el medio ambiente, particularmente para su población.

De acuerdo con las Figuras 8 a 11, todas las alternativas consideradas tienen Deterioros y Mejoramientos Ambientales Netos sobre cada uno de los Factores Ambientales objeto de evaluación. No obstante, vale destacar que la Alternativa 4 (Condición Ambientalmente Sostenible), la mayoría de los factores conllevan mejoramientos netos, como se aprecia en la Figura 11.

Según la Figura 12, el análisis comparativo entre la agresividad y/o bondad de cada una de las alternativas permite destacar a la Alternativa 4 (Condición Ambientalmente Sostenible) como la que más bondades genera sobre el medio ambiente, lo que orienta por supuesto la toma de decisión hacia dicha alternativa.

Cualquier alternativa que se seleccione deberá ser objeto de una Evaluación de Impacto Ambiental que oriente la formulación de un Plan de Manejo Ambiental para garantizar la prevención, eliminación, mitigación o control de los impactos generados. En consecuencia, si con el tiempo la alternativa que se implemente no cumpliera con las expectativas de eficacia y eficiencia requeridas, esta deberá tener un alto grado de reversibilidad que permita ser desmontada fácilmente y a un costo mínimo.

Conclusiones y recomendaciones

La metodología de evaluación sistémica del impacto ambiental (ESIA) utilizada para evaluar alternativas de manejo hidrosedimentológico en la región de La Mojana, constituye una opción válida para la evaluación de impacto ambiental.

A pesar de ser una metodología bastante exigente en cuanto a la cantidad, calidad y disponibilidad de la información, una vez esta es recolectada, agregada y ordenada mediante el Mapa Matriz EPG, los procesos de identificación y valoración (cualitativa y cuantitativa) de impactos mediante análisis multicriterio, así como la sistematización indicativa de resultados, facilitan enormemente los análisis, la toma de decisiones y en fin, todo el proceso de evaluación de impacto ambiental.

Como paso previo a la toma de decisiones y al desarrollo del proceso de Licenciamiento Ambiental de la alternativa que sea seleccionada, y en aplicación de los principios de precaución, gradualidad, economía y mejoramiento continuo, se recomienda:

- Implementar y desarrollar de inmediato la Condición Actual Mejorada, es decir, con carreteras construidas, reconstruidas, mantenidas y concesionadas, dique reconstruido y diques vertedero funcionando, caños en proceso de adecuación, mantenimiento y descontaminación, centros poblados en proceso de reconstrucción y actividades productivas en recuperación. Su desarrollo representa un mejoramiento significativo sin grandes inversiones ni impactos irreversibles, permitiendo de paso continuar con la profundización del estudio de las alternativas y con la evaluación de elementos adicionales que aún no hayan sido considerados.
- Continuar con el proceso de experimentación e investigaciónin situ, que permita el monitoreo, seguimiento y evaluación de la condición actual mejorada y por supuesto, su complementación posterior con otro tipo acciones que deberán continuar siendo objeto de evaluación y estudio.
- En síntesis, se recomienda la implementación no de una alternativa o proyecto óptimo de manejo hidrosedimentológico, sino fundamentalmente un Plan de Gestión Ambiental para el recurso hídrico y el Desarrollo Sostenible de la región de La Mojana.

Referencias Bibliográficas

- Battelle–Columbus Laboratories (1972). EnvironmentalEvaluationSystemforWaterResourcesPlanning. Bureau of Reclamation U.S. Department of Interior. Columbus Ohio. USA.
- Conesa, V. (2003). Guía Metodológica Evaluación Impacto Ambiental. Tercera Edición. Madrid.
- DANE / DEPARTAMENTO NACIONAL DE ESTADÍSTICA. (2011). Registro Único de Damnificados. Disponible en: www.dane.gov.co (Consultado el 8 de diciembre de 2011).
- Gómez Orea, D. (1994). Evaluación de Impacto Ambiental. Editorial Agrícola Española S.A, Madrid.
- Leopold, L.B., Clark, F.E., Hanshaw, B.B., Balsley, J.R. (1971). A procedureforevaluatingen-vironmentalimpact U.S. Geological Survey. Circular 645. Washington.
- UN-PIGA. (2012). Estudios, Análisis y Recomendaciones para el ordenamiento ambiental y el desarrollo territorial de La Mojana. Convenio Interadministrativo UN-DNP No. 336/2011. Universidad Nacional de Colombia. Grupo PIGA de Investigación en Política, Información y Gestión Ambiental. Bogotá.
- Vega, L. (2011). Toward the systemic parameterization of the environmental dimension. Revista Ingeniería e Investigación. Vol. 31 No. 1, (242-253). Bogotá.
- Vega, L., Ordóñez, J. Pinilla, G. (2013). Towards a systemicassessment of environmentalim-pact (SAEI) foralternativehydrosedimentologicalmanagementpractices in the Canal del Dique Colombia. Revista Ingeniería e Investigación. VOL. 33 No. 3, (242-253).